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Abstract: Rheumatoid arthritis (RA) is a chronic inflammatory and long-term autoimmune disease
that can lead to joint and bone erosion. This can lead to patients’ disability if not treated in a timely
manner. Early detection of RA in settings such as primary care (as the first contact with patients)
can have an important role on the timely treatment of the disease. We aim to develop a web-based
Decision Support System (DSS) to provide a proper assistance for primary care providers in early
detection of RA patients. Using Sparse Fuzzy Cognitive Maps, as well as quantum-learning algorithm,
we developed an online web-based DSS to assist in early detection of RA patients, and subsequently
classify the disease severity into six different levels. The development process was completed in
collaborating with two specialists in orthopedic as well as rheumatology orthopedic surgery. We used
a sample of anonymous patient data for development of our model which was collected from Shohada
University Hospital, Tabriz, Iran. We compared the results of our model with other machine learning
methods (e.g., linear discriminant analysis, Support Vector Machines, and K-Nearest Neighbors).
In addition to outperforming other methods of machine learning in terms of accuracy when all of
the clinical features are used (accuracy of 69.23%), our model identified the relation of the different
features with each other and gave higher explainability comparing to the other methods. For future
works, we suggest applying the proposed model in different contexts and comparing the results, as
well as assessing its usefulness in clinical practice.

Keywords: artificial intelligence; interpretable machine learning; fuzzy cognitive maps; rheumatoid
arthritis; particle swarm optimization

1. Introduction
The Importance of Early Diagnosis of Rheumatoid Arthritis in Primary Care

Rheumatoid arthritis (RA) is an autoimmune, chronic inflammatory disease [1,2]. One
can characterize the disease by persistent synovitis, systemic inflammation, and autoanti-
bodies (particularly to rheumatoid factor and citrullinated peptide) [3]. The incidence of
RA ranges between 0.5% to 1%, and is more common among women and older adults [3].
Aside from the social burden, RA carries a substantial individual burden, resulting in
“musculoskeletal deficits, with attendant decline in physical function, quality of life, and
cumulative comorbid risk” [4].

Mathematics 2022, 10, 496. https://doi.org/10.3390/math10030496 https://www.mdpi.com/journal/mathematics

https://doi.org/10.3390/math10030496
https://doi.org/10.3390/math10030496
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/mathematics
https://www.mdpi.com
https://orcid.org/0000-0003-3781-1360
https://orcid.org/0000-0003-1071-7294
https://orcid.org/0000-0001-7811-3716
https://doi.org/10.3390/math10030496
https://www.mdpi.com/journal/mathematics
http://www.mdpi.com/2227-7390/10/3/496?type=check_update&version=2
A.P
Highlight

A.P
Highlight

A.P
Highlight



Mathematics 2022, 10, 496 2 of 19

Primary care physicians can contribute to improved outcomes of RA patients [1].
Primary care, is the gateway into the health care system for all needs and problems and
all conditions, including uncommon or unusual ones such as RA [5,6]. Primary care
providers are expected to recognize RA patients as early as possible and refer them to a
rheumatologist [7]. Early diagnosis of RA, and consequently early treatment, are essential
to better management of RA and may lead to reduce bone tissue loss and increase favorable
outcomes, including remission [3,8,9]. However, diagnosis of RA is complex and difficult,
and in many patients, early diagnosis is not possible given that clinical indicators are
not specific to RA. Indeed, in the early stages of the disease, the typical RA patient has
"tender and swollen joints of recent onset, morning joint stiffness, and abnormal laboratory
tests, such as elevated concentrations of C-reactive protein or erythrocyte sedimentation
rate” [3] which can be indicative of RA or other types of arthritis (e.g., reactive arthritis,
osteoarthritis, psoriatic arthritis, infectious arthritis, or rarer autoimmune conditions such
as connective tissue diseases) [3].

Our team’s literature review showed that among over thousands of the studies only
about 90 studies focus on AI in primary care, and among those only two studied the use of
AI for diagnosis of RA [10]. Primary care providers need to have reliable RA diagnostic
tools, as its early diagnosis could reduce the negative impact. The goal of this study is to
develop an interpretable intelligent decision support system based on specialists knowledge
(i.e., rheumatologists and orthopedic surgeons).

We organize the rest of this paper as following: Section 2.1 explains some of the pre-
vious studies focusing on diagnosis of RA, Sections 2.1–2.4 describes briefly the different
methods we utilized and the previous work by those methods, Section 3.1 gives details
about the dataset that we used in our study, Section 3.2 provides the description of the pro-
posed algorithm, Section 4 contains the results of the proposed algorithm and comparison
with other algorithms, Section 5 highlights the limitations of the this study and Section 6
concludes the paper.

2. Background
2.1. Previous Works on Diagnosis of RA

In the previous work [11], we designed a RA diagnosis decision support system by
training a 10-node fully-connected Fuzzy Cognitive Map (FCM) and using a particle swarm
optimization (PSO) algorithm. Morita et al. [12] proposed a finger joint detection method
for RA diagnosis using 45 Japanese RA patients X-ray images, and support vector machines
(SVM). Singh et al. [13] used human knowledge as rules for fuzzy logic controller (FLC)
for diagnosis of RA, and Montejo et al. [14] used optical tomography images, extracted
594 features from the images, and using five different classifiers, classified images of
RA patients.

Despite the attempts, some improvements are still needed in this area: (a) The pre-
vious works introduced fully connected networks. Those models have a high number
of parameters, so it is possible for the model to memorize the different samples that it
is trained on. This can increase the chance of overfitting due to increase in complexity
of the network [15] and can decrease the ability of both explainability and static analysis
of the network. (b) Previous works have considered simple objective functions in their
classification process, such as classification accuracy. Generalizability of the model is low
when one is dealing with small datasets, such as the datasets used in the above-mentioned
works. Additionally, accuracy might not be the best metric when the training data have
an imbalance in the number of classes. Therefore, it is important to tackle this problem by
defining the right objective function. In order to overcome the above-mentioned limitations,
in this study we propose a novel method based on FCM and a quantum learning algorithm
[16], to classify the severity of RA data into six different classes in a way that is more
interpretable and generalizable. The outcome of the interest is detection of RA patients at
early stages.
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2.2. Fuzzy Cognitive Maps

Fuzzy Cognitive Maps have been developed by Kosko [17] and are based on cognitive
maps theory [18]. Using causal models, they attempt to mimic human experts’ cognitive
processes in specific domains. FCM uses a number of concepts and the causal relationships
existing between the features for modeling a system, which can be represented as a directed
graph [19]. FCM includes Nn concepts whose values can be shown as Equation (1).

C = [C1C2 · · ·CN2
n
] (1)

where C is a state vector and Ciε[0, 1] represents the value of the ith concept. As the value of
a concept approaches +1, its associated activation degree increases. The causal relationship
of concepts can be stated in terms of a weight matrix, shown in the Equation (2).

W =


w11 · · · w1n

. · .

. · .
wn1 · · · wnn

 (2)

where wijε[−1,+1] shows the value of a weight from the ith to the jth concept. When wij is
a positive number, the ith concept has a positive impact on the jth concept. In other words,
any increase in the ith concept results in an increase in the jth concept. The ith concept has
a negative impact on the jth concept when wij is a negative number. In the case of wij = 0,
there is no causal relationship between the ith and jth concepts [19]. If A is causally related
to B, it does not necessarily mean that B is caused by A as well. Thus, wij do not need to
be equal to wji. In other words, the weight matrix does not need to be a symmetric matrix.
Figure 1 shows a 4-node FCM with its associated weight matrix.

Figure 1. A 4-node FCM with its weight matrix.

The ith node value in the (t + 1)th iteration can be calculated from the weight matrix
and the values of the concepts in the tth iteration. By using Equation (3), we can obtain:

Ci(t + 1) = Ψ(
Nn

∑
j=1

wijCj(t)) (3)

where Ψ(x) is a transfer function, and is for limiting the output of the concept values to
the desired range. Based on the conducted experiments [20], sigmoid transfer functions
outperform other types of transfer functions; hence, we used this function, as stated in the
Equation (4).

Ψ(x) =
1

1 + e−λx (4)
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where λ is a free parameter which denotes the function’s slope. A typical value of λ is
5 [21]. Consider the Equation (3) in terms of a matrix multiplication:

C(t + 1)T = Ψ(W ∗ C(t)T) (5)

where A(t)T represents the transpose of matrix A at tth iteration.
The Equation (5) illustrates that, in every iteration, a FCM calculates the linear combi-

nation of row vectors, denoted by

wi =[wi1wi2 · · ·win],

each with the Ci coefficient and does a transformation to keep the values in the desired
range. Owing to the use of a continuous transfer function, a FCM simulation can reach one
of the following three cases [22]: (1) “Fixed point attractor” where after a limited number of
iterations, all concepts converge to a fixed pattern; (2) “Limit cycle”, where after a number
of iterations, all concepts will fluctuate between a limited number of fixed patterns; and (3)
“Chaotic attractor” where concepts will fluctuate between an unlimited number of patterns.
Figure 2 shows a fixed-point attractor simulation for the FCM shown in Figure 1.

Figure 2. Fixed point simulation for the FCM shown in Figure 1.

2.3. Particle Swarm Optimization

Kennedy and Eberhart [23] introduced Particle Swarm Optimization (PSO) based on
behavior observed in nature. It is one of the most popular optimization algorithms and
used in various different fields, such as finance [24], chemistry [25], and medicine [26]. PSO
is a search algorithm, which is based on population concept, where the particles comprising
the population move in the multi-dimensional space to find the optimal position that
optimizes an objective function. Based on the values returned by the objective function at
each iteration, the gbest is the position which returns the global best value over all iterations
and pbesti is the position having the best value of the ith particle over all iterations.

The ith position in a d-dimensional search space, denoted by

xi =[x1
i , x2

i , · · · xd
i ],

move towards a position in between the gbest and pbesti, guided by velocity vi which is also
a d-dimensional vector. The whole update equations are given in Equations (6) and (7).

xi(t + 1) = vi(t + 1) + xi(t) (6)

vi(t + 1) = ωvi(t) + c1r1(pbesti − xi(t)) + c2r2(gbest− xi(t)) (7)
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where ω is a number chosen in the range of [0.1, 0.5] and c1, c2 are two numbers in the
range of [1.5, 2]. The values are chosen, such that PSO algorithm has a proper exploration
and exploitation abilities at the same time. More exploration causes the particles to not
converge to an optima. Although having a lot of exploitation would make the particles
become stuck in a local optima, as they are not able to explore most of the search space.

2.4. The QFCM Algorithm

Fuzzy cognitive maps can be analyzed in two different ways: dynamic and static
analysis. In dynamic analysis, values that are obtained from a FCM simulation, and the
discrepancies between them and the test pattern are important. In static analysis, the
weights, or lack of it, are important. Non-zero weights in FCM represent a causal relation-
ship between concepts, in contrast to conventional neural networks such as multilayer
perceptron (MLP).

Designing algorithms which can form a FCM with both dynamic and static analyses
abilities is not an easy task and even conventional algorithms such as Non-linear Hebbian
Learning (NHL) [27] are not able to do so. Recently, we proposed QFCM algorithm [16]
to tackle this problem. It outperformed some other newly developed algorithms such as
dMAGA [28]. The foundation of the QFCM algorithm is that it models the existence of
a weight as a Q-bit. Q-bits are information units in the quantum evolutionary algorithm
(QEA) [29], and models the values of weights as particles, which are theunits of information
in PSO algorithm. Equation (8) shows a simple Q-bit.

Qi =

[
αi
βi

]
(8)

In Equation (8), α2
i and β2

i denote the probability that Qi exists (i.e., one state), and
does not exist (i.e., zero state). We combine the quantum evolutionary algorithm (QEA)
and particle swarm optimization (PSO) algorithm, such that the FCMs whose training is
performed by QFCM, not only contain the causal relationship between the components but
also can be analyzed dynamically or statically. One of the limitations of the QFCM is that
it was developed for time series predictions. It is, therefore, not currently appropriate for
classification problems. In this study, we overcame this limitation.

3. Materials and Methods

In this paper, we report our method development and validation according to the multi-
variable prediction model’s transparent reporting for individual prognosis or diagnosis
(TRIPOD) guideline. The TRIPOD guideline is used to help the authors in writing reports
and help the readers to critically look at the different sections of the report [30]. The
guideline of TRIPOD has been offered to support authors in writing reports of development
and validation of their prediction models. See Appendix A for the TRIPOD checklist.

3.1. Dataset

To develop our web-based decision support system (DSS), we used a dataset with
the information of 13 anonymous patients with RA who were randomly chosen from
Shohada University Hospital in 2016. Table 1 shows the features that are used in the study
along with the justification for their use. Table 2 shows some samples from the dataset
and their associated severity or class label. We included all adults diagnosed with RA.
The dataset has been used for training and validating. A subset of this dataset had been
used for regression [11]. As with all artificial intelligence (AI) and machine learning (ML)
empowered systems, the output of our DSS is highly related to the data with which it
has been developed (input data). Given the complex and ambiguous nature of patient
data, including clinical judgements, healthcare professionals may find it easier to express
these data using linguistic variables rather than numerical ones [31]. In AI, fuzzy logic can
help deal with these ambiguous, subjective, and imprecise judgments. Therefore, with the
physicians, we chose six fuzzy variables with Gaussian membership functions (Extremely
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Severe, Very Severe, Severe, Minor, Very Minor, Extremely Minor) to describe the RA
diagnostic criteria. The criteria and justifications for their selection are provided in Table 1.
For further discussion regarding the selection of these criteria, refer to [11].

Table 1. Criteria for diagnosis of patients with RA and their explanations.

Selected Criteria Justification

C1: Rest pain
Pain is one the most common symptoms in patients with RA. While
it is assumed to be interlinked with inflammation, in many cases,
despite controlling the inflammation, the FL pain persists [32,33].

C2: Morning stiffness
This symptom is common among patients with RA. Clinical trials
have shown that the duration of this symptom is associated with
reduced quality of life [34].

C3: Symmetry of joint
infection

Symmetrical joint involvement is a hallmark of RA. Patients usually
have several infections in their joints [35].

C4: Redness Due to inflammation, joints may become red and warm in
comparison to FL the surrounding tissue [35].

C5: Body pain Patients with RA usually experience moderate and persistent pain
in their body [36].

C6: Swelling One symptom of RA, synovitis, can cause swelling in the joints [37].

C7: Positive Rheumatoid
factor (RF) test

This test determines the amount of RF in one’s blood. RFs,
produced by immune system, are a kind of proteins which are able
to destroy healthy tissue. In 70–80% of RA patients test positively
for RF. This test has a specificity of 86% [35].

C8: Elevated Erythrocyte
sedimentation rate (ESR):

It is a test which is able to determine the severity of inflammation
inside a body. It measures the pace at which erythrocytes falls.
Patients with RA usually have elevated ESR, owing to
hypergammaglobulinemia [35,38].

C9: Positive Anti-cyclic
citrullinated peptide
antibody test (Anti-CCP)

57% to 66% of RA patients have a positive-anti-CCP.
Positive-anti-CCP patients usually have more severe RA with poor
prognosis [35].

Additionally, based on health professionals’ opinions, we assigned six different sever-
ity levels to the patients with RA so that they can also help with a more subjective under-
standing. The levels for each of the conditions for each of the patients is taken and there
were no missing data in our dataset. Some of the selected data from the initial dataset from
the hospital is shown in Table 2. The Ci refers to the Ci criteria which is defined in Table 1.

Table 2. Some of the dataset used in this study.

No. C1 C2 C3 C4 C5 C6 C7 C8 C9 Severity (Class Label)

1 0.85 0.7 0.5 0.3 0.5 0.7 0.7 0.7 0.7 Extremely severe (5)

2 1.0 0.7 0.5 0.3 0.5 0.7 0.7 0.7 0.7 Extremely severe (5)

3 0.5 0.7 0.5 0.3 0.5 0.3 0.3 0.5 0.5 Very severe (4)

4 0.7 0.5 0.5 0.3 0.5 0.3 0.7 0.7 0.3 Very severe (4)

...

10 0.15 0.15 0.15 0.3 0.15 0.5 0.3 0.5 0.3 Very minor (1)

11 0.0 0.15 0.15 0.0 0.15 0.15 0.15 0.5 0.15 Very minor (1)

12 0.15 0.0 0.15 0.0 0.15 0.15 0.0 0.3 0.15 Extremely minor (0)

13 0.0 0.0 0.15 0.0 0.15 0.15 0.0 0.3 0.15 Extremely minor (0)
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3.2. Proposed Method

Our proposed method includes the training of a FCM with our QFCM algorithm [16]
modified for classification problems and with a new objective function. The modified
version of QFCM algorithm is a supervised learning methodology, that is presented in in
Algorithm 1.

Algorithm 1 The QFCM algorithm, modified for classification problems
Input: Patient’s Data
Output: Fuzzy Cognitive Map

1: initialization()
2: for i = 1 . . . MaxIter do
3: for Q = [Q1Q2 · · ·Qn2 ] do
4: observe Q to produce a sparse network.
5: update velocity and position of the particles.
6: mutate particles.
7: repair particles.
8: classify the RA patients’ data by using output concept’s value and output fuzzy

sets.
9: calculate the value of the objective function

10: update best local and best global particles
11: end for
12: update all Qs with Hε gate.
13: update the best quantum candidate.
14: if migration period reached then
15: perform local as well as global migration.
16: end if
17: end for

In the initialization phase, all the Q-bits within a quantum population consist of the
training set are initialized with a value of 1√

2
so that the probability of existence and

inexistance of the links becomes equal, i.e., αi = βi =
1√
2

for all values of i. The positions
and velocities of particles, representing the numerical values of weights, are initialized
with a random number ranging between [−1, −0.05) and (+0.05, +1] and 0, respectively.
The range of [−0.05, +0.05] is omitted because it cannot represent a causal relationship in a
FCM [38]. In the observation process, either 1 (i.e., existence of a link) or 0 (i.e., inexistence
of a link) is assigned to the Q-bits, based on the Equation (9).

Bit(Qi) =

{
1, if r > α2

i
0, otherwise

(9)

In Equation (9), ri is a random number in the range of [0, 1] with uniform distribution.
In the next step, the positions and velocities of the particles are updated according to the
Equations (10) and (11), which are proposed in [39] as the modified version of the PSO
algorithm.

pi(t + 1) = pi(t) + vi(t + 1) (10)

vi(t + 1) = ωvi(t)+ciri(lbesti(t)− pi(t))

+c2r2(gbest(t)− pi(t))
(11)

where pi(t) and vi(t) represent the position and velocity of the ith particle at tth iteration.
ω, c1, and c2 are three random numbers in the ranges of [0.1, 0.5], [1.5, 2], and [1.5, 2],
respectively. “lbesti” and “gbest” show the best positions of the ith and of all particles,
respectively. In step 6 of the QFCM algorithm, mutation occurs: elements from the latter
half of each particle are sampled with a probability of µ, and replaced with a random
number in the range of [−1, 1]. In the repair step (i.e., step 7), the values of all particles
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are confined to the range [−1, +1] using Equation (12). It is worth noting that if pi is in the
range (+1, +∞) or in the range (−∞, −1), the velocity of ith particle is multiplied by −1 to
reverse the search focus direction given that saturation has occurred in the initial direction.
This ensures that the search algorithm does not explore areas that are outside the search
space.

repair(pi) =


0, if piε[−0.05,+0.05]
+1, if piε(+1,+ inf)
−1, if piε(− inf,−1)
pi, otherwise

(12)

In the classification step 8, all of the trained samples are assigned to one of the six
classes, illustrating the severity of RA. To this end, the value of the FCM’s output concept
is calculated for a given sample, as is the membership degree of this value in each of the six
fuzzy sets (Figure 3). A sample is assigned to a class if its membership degree in this class
is higher than that in the other classes. Centers and widths of the membership functions
are design parameters.

Figure 3. Membership functions associated with RA severity levels.

After the classification step, the output of objective function, proposed in this study in
the context of FCMs, is calculated by Equation (13).

F(w) =
#misclassi f ied

#samples
+

samples

∑
i=1

(xi − b1
i )

2 + (xi − b2
i )

2

NF
(13)

In Equation (13), “#misclassified” is the total number of misclassified samples, “#samples”
is the total number of samples in the training set, xi is the value of the FCM output concept
for the ith sample in the training set, b1

i and b2
i are the two borders (i.e., intersection of fuzzy

membership functions) nearest to xi, and NF is the normalization factor that is defined in
Equation (14). NF is defined in order to limit the second term of the objective function to
the range of [0, 1].

NF = #Samples× Lb (14)

In Equation (14), Lb represents the length of the two farthest successive borders. As
indicated by Equation (13), the objective function is designed in such a way that, apart
from the classification accuracy, it considers the distance of the training samples from the
borders. The global minimum of the second term of the objective function occurs when
the FCM maps all the training samples, exactly, to the centers of the successive borders,
placing them thus at the farthest possible distance from the borders. Therefore, according
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to the theory presented in the SVMs [40], the probability of generalizability increases. In
step 10 of the QFCM algorithm, the best local and best global particles within the quantum
population are saved. Subsequently, in step 12, the Q-bits are updated using H gate [41],
which is defined in Equation (15).

Hε(Qi) =



[ √
ε√

1− ε

]
, α2 ≤ ε

Rotate(Qi), ε < α2 ≤ 1− ε[√
1− ε
√

ε

]
, 1− ε ≤ α2

(15)

In Equation (15), Rotate(Qi) indicates the rotation of the Q-bit by degrees, and the
amount of rotation is a design parameter with the typical value of 0.01. In step 15, local and
global migration is performed as a mechanism for avoiding local optima. In this regard,
values of the best quantum candidate are copied to other candidates locally or globally.

Fengmao et al. [42] showed that after several iterations, the Q-bit converges to either
condition 1 or condition 3 of Equation (15). In previous studies [16], we proved that after
convergence, it is difficult to escape from the optima it has converged into. Since this
work is an extension to work for classification, the same reason applies and after several
iterations, there is a low probability to escape from the local optima.

The new objective function defined in Equation (13) considers the predicted labels
and the true data to assign values to each position. The modified QFCM algorithm is a
supervised learning algorithm that classifies the severity of RA in the patient. For a new
patient data, the attributes of the person is taken and the last attribute is taken to be 1√

2
.

The attributes for the next iteration is obtained using Equation (5). The last attribute of
the updated list can be mapped into the fuzzy membership function shown in Figure 3 to
classify the patient into the different categories.

4. Experimental Results

In this section, we will first present the results of our analysis using the proposed
method, as well as, the results of its comparison with other machine learning methods.
Then, we will present the contribution of each of the diagnostic criteria to the results by
illustrating the weight matrix obtained from training an FCM with our proposed method.
For demonstrating the robustness of the proposed method against different parameter
settings, we set the free parameters as shown in Table 3.

Table 3. Free parameters values of the proposed method.

MaxIter Global Migration Period Local Migration Period ε µ

1200 20 10 0.01 0.01

4.1. Classification Accuracy

We trained a 10-node FCM, with one output concept, by using the data shown in the
Table 2 and the proposed method. The dataset consists of 13 patients taken randomly from
Shohada University Hospital. Considering the sample size, the selection of a reliable metric
is important. For evaluating its efficacy, in view of the scarce dataset, we used leave-one-out
cross validation method (LOOCV). Tables 4–12 shows the accuracy and confusion matrix
obtained. Our modified QFCM algorithm (i.e., proposed method) classified nine of the 13
samples correctly, representing an accuracy rate of 69.23%. Among the four misclassified
samples, two belong to class 2, one belongs to class 1, and one belongs to class 4. In addition,
based on the obtained confusion matrix, in three of the four misclassified samples, the
predicted severity is higher than the actual severity. In other words, although misclassified,
underdiagnosing of the patients with RA is avoided. In clinical contexts, false negatives are
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more dangerous than false positives. Overestimation of models leads to a false positive
(i.e., overdiagnosis) rather than a false negative (i.e., underdiagnosis), therefore there will
be a higher chance of the patient being asked to see a specialist.

In order to compare our results with other machine learning methods, we trained
and evaluated different classifiers, namely linear discriminant analysis (LDA), linear SVM,
quadratic SVM, cubic SVM, fine K nearest neighborhood (KNN), and weighted KNN—by
LOOCV and using the same dataset (Table 2). To check the highest accuracy, we also tried
to reduce the number of features and rerun the experiments. Since we are removing the
search space, methods such as KNN are expected to perform better. However, based on
domain knowledge (i.e., clinical literature and our collaborating specialists opinion), we
observed that the removed features to increase accuracy are quite important in clinical
experiments. Tables 4–12 present the results. The two models with fewer features had been
checked to see if reducing the features would improve the accuracy or not. In one case, it
does increase the accuracy but in cost of losing important clinical features which absolutely
needs to be considered in this clinical context. Among the rest of the classifiers evaluated,
LDA performed the best with an accuracy rate of 53.8%, which is 15.4% lower than that of
our QFCM (i.e., 69.23%).

Moreover, unlike our proposed method, LDA underestimates the severity of RA, which
may result in mis/under-diagnosis. Figure 4 presents a coweb [43] graphical representation
of our proposed method and LDA to visually compare the two methods. It illustrates
that the area under the curve for LDA is larger than the proposed method illustrating
its lower accuracy. We randomly split the data into 5 folds, and QFCM plus LDA, linear
SVM, Quadratic SVM, Cubic SVM, Fine KNN, and weighted KNN were trained on the
data. We saved the obtained accuracy. We repeated this procedure for 10 times randomly-
having sufficient accuracies to run statistical test. Then, we applied t-test. The following
table shows the obtained p-values (Table 13). Given the results, the inference is that in all
scenarios, there is a significant difference between the accuracies obtained by the proposed
method, i.e., QFCM, and other methods. This testing proves that QFCM can significantly
outperform other methods in terms of accuracy.

Table 4. Proposed Method. Accuracy: 69.23%.

Predicted
0 1 2 3 4 5

Actual

0 2 0 0 0 0 0
1 0 1 1 0 0 0
2 0 0 0 0 2 0
3 0 0 0 2 0 0
4 0 0 0 1 2 0
5 0 0 0 0 0 2

Table 5. Linear discriminant analysis (LDA). Accuracy: 53.8%.

Predicted
0 1 2 3 4 5

Actual

0 2 0 0 0 0 0
1 1 0 1 0 0 0
2 0 0 0 2 0 0
3 0 0 1 0 1 0
4 0 0 0 0 3 0
5 0 0 0 0 0 2
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Table 6. Linear SVM; Accuracy 15.4%.

Predicted
0 1 2 3 4 5

Actual

0 0 2 0 0 0 0
1 1 0 1 0 0 0
2 0 0 0 1 1 0
3 0 0 1 0 1 0
4 0 0 1 0 2 0
5 0 0 0 0 2 0

Table 7. Quadratic SVM; Accuracy 46.2%.

Predicted
0 1 2 3 4 5

Actual

0 2 0 0 0 0 0
1 1 1 0 0 0 0
2 0 0 0 2 0 0
3 0 0 2 0 0 0
4 0 0 1 1 1 0
5 0 0 0 0 0 2

Table 8. Cubic SVM; Accuracy 38.5%.

Predicted
0 1 2 3 4 5

Actual

0 2 0 0 0 0 0
1 1 0 1 0 0 0
2 0 0 0 2 0 0
3 0 0 2 0 0 0
4 0 0 1 1 1 0
5 0 0 0 0 0 2

Table 9. Fine KNN; Accuracy 46.2%.

Predicted
0 1 2 3 4 5

Actual

0 2 0 0 0 0 0
1 1 1 0 0 0 0
2 0 0 0 1 1 0
3 0 0 2 0 0 0
4 0 0 1 1 1 0
5 0 0 0 0 0 2

Table 10. Weighted KNN; Accuracy 46.2%.

Predicted
0 1 2 3 4 5

Actual

0 2 0 0 0 0 0
1 1 0 1 0 0 0
2 0 0 0 1 1 0
3 0 0 1 0 1 0
4 0 0 1 0 2 0
5 0 0 0 0 0 2
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Table 11. KNN with 4 features; Accuracy 76.9%.

Predicted
0 1 2 3 4 5

Actual

0 2 0 0 0 0 0
1 0 2 0 0 0 0
2 0 0 0 2 0 0
3 0 0 0 1 1 0
4 0 0 0 0 3 0
5 0 0 0 0 0 2

Table 12. KNN with 3 features; Accuracy 61.5%.

Predicted
0 1 2 3 4 5

Actual

0 2 0 0 0 0 0
1 0 1 1 0 0 0
2 0 0 0 0 2 0
3 0 0 1 0 1 0
4 0 0 0 0 3 0
5 0 0 0 0 0 2

Figure 4. Cobweb graphical representation of LDA and our proposed method

Table 13. p-values of the different algorithms.

LDA Linear Quadratic Cubic Fine Weighted
SVM SVM SVM KNN KNN

QFCM 0.002 0.005 0.001 0.006 0.002 0.002

4.2. Weight Matrix of the FCM and Its Interpretability

Using our dataset (Table 2), we trained an FCM, with the weight matrix shown in
Equation (16). The density of this FCM is 50%, meaning that half of the 100 weights are
zero. The first nine columns represent the nine criteria in the order presented in Table 1.
Furthermore, an extra node has been added which is connected to all other nodes. This
10th node is used to determine the contribution of the other nodes to detect the disease.
The 10th column of this matrix elucidates the impact of each of the features on the output
concept. None of the weights of associated with RA diagnostic tests (i.e., C7, C8, C9) are
0, demonstrating the importance of these tests relative to the physical symptoms of RA.
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Among the physical symptoms chosen for the diagnostic criteria, rest pain had the most
important contribution to the output, whereas the weights of morning stiffness, redness,
and body pain were zero and among lab tests, ESR had a greater impact on the output.
Regarding anti-CCP and RF, our QFCM algorithm assigned a larger weight to anti-CCP,
which indicates that it contributes more to the output than RF, which is compatible with
the clinical study conducted on over 1025 patients [44].

W =



−0.906 0 0 0 0 −0.774 −0.068 0 −0.058 −0.930
0 −0.283 0 0 0 0.799 −0.999 −0.360 0 0

−0.707 0 0 −0.130 −0.706 0 0 −0.326 −0.839 −0.313
0.137 0 0.869 0.889 −0.978 −0.512 −0.332 0 −0.614 0

0 −0.738 0 0 0.375 0.954 0 0.749 0 0
−0.292 −0.824 0.778 0 0 0 0 0 0.852 0.647
−0.612 0.416 0 0 0 0 0 −0.215 −0.275 −0.616
0.869 −0.937 0 0 −0.735 0 0 −0.877 0 −0.999

0 0 0 0.945 0.393 0.444 0 −0.484 0 0.623
1 0 0 −0.403 −0.787 0 0 0 0.447 0


(16)

Using the Equation (16), the interactions between the criteria can be investigated.
Weights with values near to 1 or −1 are indicative of strong relationships. For example,
referring to the first column on the left, if we ignore the self-feedback/loop, our results
indicate that ESR (i.e., C9) is the criterion most strongly related to rest pain (i.e., C1) and
symmetry of joint infection (i.e., C3), or according to the 5th column from the left, body
pain and redness (i.e., C5 and C4) are interlinked.

4.3. Web Based DSS

Our DSS is freely available for academic purposes and can be accessed from the GitHub
page https://github.com/rahimi-s-lab/RA-paper (accessed on 1 December 2021) or https:
//rahimislab.ca/ra-dss (accessed on 1 December 2021) and is coded in the Hypertext
Preprocessor (PHP) language to make it easy to use. To help calculate the severity of a RA
patient, the input data should be inserted by a user for each of the nine diagnostic criteria
(Figure 5). The DSS will perform all calculations based on the proposed method in this
study and immediately display the patient’s severity of RA along with interpretations
of the results (Figure 6). The DSS also contains information on the symptoms and some
information on RA.

https://github.com/rahimi-s-lab/RA-paper
https://rahimislab.ca/ra-dss
https://rahimislab.ca/ra-dss
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Figure 5. The DSS FL interface for taking user input.

Figure 6. The DSS interface for user output.
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5. Limitations

First, while we acknowledge the small sample size in our study, we believe this
study is a good illustration of how hybrid interpretable AI methods could be developed
with support of domain knowledge for early detection of diseases using small dataset.
Second, the developed web based decision support system is not tested and/or validated
with different users. Future studies are needed to evaluate end-users perspectives on the
developed tool.

6. Conclusions

Primary care providers are responsible for identifying patients with RA and referring
them to a specialist, however, the diagnosis of patients with RA is complex and, in many
cases, early diagnosis of RA by primary care providers is not an easy task because of
the non-specific nature of their symptoms and clinical indicators. The aim of this study
was to: (1) contribute to the existing methodology in the field by overcoming the current
limitations, and (2) develop a web-based Decision Support System to aid primary care
providers in early diagnosis of patients with RA. We developed this system based on well-
known soft computing method, Fuzzy Cognitive Maps, and modified quantum learning
algorithm. To develop the algorithm for this system, we consulted with two specialists
(i.e., a rheumatologist and an orthopedic surgeon) and integrated their knowledge into
our model. We evaluated the accuracy of the proposed method and compared its accuracy
rate with other machine learning methods such as LDA, quadratic SVM, weighted KNN
which had accuracies of 53.8%, 46.2% and 46.2%, respectively. Our proposed hybrid
method obtained the highest accuracy when all the features of interest are considered and
outperformed other machine learning methods. Apart from having higher accuracy, one
of the strengths of our proposed hybrid method is its interpretability. Due to the FCM
matrix generated, one can obtain an idea of how the different features are related to each
other and contribute to the final output. For the future works, more investigations are
required to evaluate the developed method and web-based decision support system in
larger-scale, adapt it to other clinical contexts, and interlink the knowledge obtained from
the interpretability of the network into human knowledge.
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Appendix A. Transparent Reporting of a Multi-Variable Prediction Model for
Individual Prognosis or Diagnosis (TRIPOD) Checklist

Table A1. TRIPOD Checklist.

Section/Topic Item Checklist Item Page
Title and Abstract

Title 1 D;V
Identify the study as developing and/or validating a multi-variable
prediction model, the target population, and the outcome to
be predicted

1

Abstract 2 D;V
Provide a summary of objectives, study design, setting, participants,
sample size, predictors, outcome, statistical analysis, results,
and conclusions.

1

Introduction

Background
and objectives

3a D;V

Explain the medical context (including whether diagnostic or
prognostic) and rationale for developing or validating the
multi-variable prediction model, including references to
existing models.

1, 2, 3, 4,
5

3b D;V Specify the objectives, including whether the study describes the
development or validation of the model or both. 2

Methods

Source of data

4a D;V
Describe the study design or source of data (e.g., randomized trial,
cohort, or registry data), separately for the development and
validation datasets, if applicable.

5,6

4b D;V Specify the key study dates, including start of accrual; end of
accrual; and, if applicable, end of follow-up. 5, 6

Participants
5a D;V

Specify key elements of the study setting (e.g., primary care,
secondary care, general population) including number and location
of centres.

5, 6

5b D;V Describe eligibility criteria for participants. 5
5c D;V Give details of treatments received, if relevant 6

Outcome
6a D;V Clearly define the outcome that is predicted by the prediction

model, including how and when assessed. 10

6b D;V Report any actions to blind assessment of the outcome to be
predicted N.A.

Predictors

7a D;V
Clearly define all predictors used in developing or validating the
multi-variable prediction model, including how and when they
were measured.

6

7b D;V Report any actions to blind assessment of predictors for the
outcome and other predictors. N.A.

Sample size 8 D;V Explain how the study size was arrived at. N.A.

Missing data 9 D;V
Describe how missing data were handled (e.g., complete-case
analysis, single imputation, multiple imputation) with details of any
imputation method.

6

Statistical
analysis
methods

10a D Describe how predictors were handled in the analyses. 6

10b D Specify type of model, all model-building procedures (including any
predictor selection), and method for internal validation. 4, 5, 6

10c V For validation, describe how the predictions were calculated. 9

10d D;V Specify all measures used to assess model performance and, if
relevant, to compare multiple models.

9, 10 , 11,
12

10e V Describe any model updating (e.g., recalibration) arising from the
validation, if done. N.A.

Risk groups 11 D;V Provide details on how risk groups were created, if done. N.A.
Development
vs. validation

12 V For validation, identify any differences from the development data
in setting, eligibility criteria, outcome, and predictors.

9
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Table A2. TRIPOD Checklist.

Section/Topic Item Checklist Item Page
Results

Participants

13a D;V

Describe the flow of participants through the study, including the
number of participants with and without the outcome and, if
applicable, a summary of the follow-up time. A diagram may
be helpful.

N.A.

13b D;V
Describe the characteristics of the participants (basic demographics,
clinical features, available predictors), including the number of
participants with missing data for predictors and outcome.

N.A.

13c V
For validation, show a comparison with the development data of
the distribution of important variables (demographics, predictors
and outcome).

N.A.

Model
development

14a D Specify the number of participants and outcome events in each
analysis 10, 11, 12

14b D If done, report the unadjusted association between each candidate
predictor and outcome. 12, 13

Model
specification

15a D
Present the full prediction model to allow predictions for
individuals (i.e., all regression coefficients, and model intercept or
baseline survival at a given time point).

13, 14

15b D Explain how to the use the prediction model. 9, 13, 14
Model

performance
16 D;V Report performance measures (with CIs) for the prediction model. 10

Model-
updating 17 V If done, report the results from any model updating (i.e., model

specification, model performance). N.A.

Discussion

Limitations 18 D;V Discuss any limitations of the study (such as non-representative
sample, few events per predictor, missing data). 13

Interpretation

19a V For validation, discuss the results with reference to performance in
the development data, and any other validation data. 10, 11, 12

19b D;V
Give an overall interpretation of the results, considering objectives,
limitations, results from similar studies, and other relevant
evidence.

10, 11,
12, 13

Implications 20 D;V Discuss the potential clinical use of the model and implications for
future research. 14

Other Information
Supplementary
information 21 D;V Provide information about the availability of supplementary

resources, such as study protocol, Web calculator, anddatasets.
13, 14,
18, 19

Funding 22 D;V Give the source of funding and the role of the funders for the
present study. 15
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